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S-Dominating Effect Algebras
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A special type of effect algebra called an S-dominating effect algebra is introduced.
It is shown that an S-dominating effect algebra P has a naturally defined Brouwer-
complementation that gives P the structure of a Brouwer±Zadeh poset. This
enables us to prove that the sharp elements of P form an orthomodular lattice.
We then show that a standard Hilbert space effect algebra is S-dominating . We
conclude that S-dominating effect algebras may be useful abstract models for
sets of quantum effects in physical systems.

1. INTRODUCTION

Effect algebras (or D-posets) have recently been introduced for investi-

gating the foundations of quantum mechanics (DvurecÏ enskij, 1995; DvurecÏ en-

skij and PulmannovaÂ, 1994; Foulis and Bennett, 1994; KoÃpka, 1992; KoÃpka

and Chovanec, 1994; RiecÏ anovaÂand Brsel, 1994). The advantage of effect

algebras over previously defined structures of sharp elements such as orthoal-

gebras (Feldman and Wilce, 1933; Foulis et al., 1992; Gudder, 1988) and
orthomodular posets (Beltrametti and Cassinelli, 1981; Gudder, 1988; PtaÂk

and PulmannovaÂ, 1991) is that effect algebras provide a mechanism for

studying quantum effects that may be unsharp. However, an effect algebra

is so general that its set of sharp elements need not form a regular algebraic

structure. To remedy this shortcoming, we introduce a special type of effect

algebra called S-dominating. We show that for S-dominating effect algebras,
the set of sharp elements form an orthomodular lattice. We also show that a

standard Hilbert space effect algebra is S-dominating. Hence, S-dominating

effect algebras may be useful abstract models for sets of quantum effects in

physical systems.
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We now give a brief overview, leaving precise mathematical definitions

for Section 2. We first consider a generalization of an effect algebra called

a DeMorgan (DM) poset P. We denote the sharp elements of P by Ps and
say that P is sharply dominating if every element of P is dominated by a

smallest sharp element. If P is sharply dominating, it is shown that P possesses

a natural B-complementation that gives P the structure of a BZ-poset. For

BZ-posets, we show that existing infima and suprema of sharp elements are

sharp. A sharply dominating DM-poset P is called an S-dominating DM-

poset if a Ù p exists for every a P P, p P Ps . It follows that if P is S-
dominating, then Ps is an orthocomplemented lattice. We next consider S-

dominating effect algebras and show in this case that Ps is an orthomodular

lattice. Finally, Section 3 shows that Hilbert space effect algebras are S-

dominating.

2. S-DOMINATING STRUCTURES

A DM-poset is an algebraic structure (P, # , 0, 1, 8) where (P, # , 0, 1)

is a bounded poset and 8 is a unary operation on P that satisfies: a9 5 a and

a # b implies b8 # a8. It is easy to verify that DeMorgan’ s laws hold on P.
That is, (a Ú b)8 5 a8 Ù b8 and (a Ù b)8 5 a8 Ú b8 in the sense that if one

side of the equality exists, then so does the other side and they coincide. An

element a P P is sharp if a Ù a8 exists and equals 0. It is clear that 0, 1 are

sharp and if a is sharp, then a8 is sharp. Denoting the set of sharp elements

in P by Ps , it follows that (Ps , # , 0, 1, 8) is an orthocomplemented poset.
We say that P is sharply dominating if every a P P is dominated by a

smallest sharp element aÃ. That is, aÃP Ps , a # aÃand if b P Ps satisfies a
# b, then aÃ# b. It is evident that aÃis unique. If P is a sharply dominating

DM-poset, we define a unary operation , on P by a , 5 (aÃ)8. The following

result is proved in Gudder (n.d.).

Lemma 2.1. If P is a sharply dominating DM-poset, then for every a,

b P P we have (i) a # a , , , (ii) a # b implies b , # a , , (iii) a Ù a , 5 0,

(iv) a , 8 5 a , , .

A unary operation , that satisfies (i)±(iv) of Lemma 2.1 is called a B-

complementation and a DM-poset with a B-complementation (P, # , 0, 1, 8,
, ) is called a BZ-poset (Cattaneo, n.d.; Cattaneo and Marino, 1988; Cattaneo

and NisticoÁ , 1989; Gudder, n.d.). The results in the next lemma are proved

in Gudder (1996, n.d.).

Lemma 2.2. Let P be a BZ-poset. (i) If a Ú b exists in P, then a , Ù b ,

exists in P and (a Ú b) , 5 a , Ù b , . (ii) The following statements are

equivalent: (1) a P Ps , (2) a 5 a , , , (3) a8 5 a , .
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Corollary 2.3. Let P be a BZ-poset and let a, b P Ps . (i) If a Ú b exists,

then a Ú b P Ps. (ii) If a Ù b exists, then a Ù b P Ps .

Proof. (i) Applying Lemma 2.2, we have

(a Ú b) , 5 a , Ù b , 5 a8 Ù b8 5 (a Ú b)8

Hence, by Lemma 2.2(ii), we have that a Ú b P Ps .

(ii) Since a, b P Ps , we have a8, b8 P Ps . By (i), we have (a Ù b)8 5
a8 Ú b8 P Ps . n

Of course, if P is a sharply dominating DM-poset, then P is a BZ-poset,

so Lemma 2.2 and Corollary 2.3 hold for P. A sharply dominating DM-poset

P is called a S-dominating DM-poset if a Ù p exists for every a P P, p P
Ps . (It follows from DeMorgan’ s laws that a Ú p also exists.) If P is an S-

dominating DM-poset, it follows from Corollary 2.3 that (Ps , # , 0, 1, 8) is
an orthocomplemented lattice.

Lemma 2.4. Let P be an S-dominating DM-poset. (i) If a, b P P, p1, p2

P Ps , and a Ù b exists, then (a Ù p1) Ù (b Ù p2) exists and equals (a Ù b) Ù
( p1 Ù p2). (ii) If a, b P P, p P Ps , and a Ù b exists, then (a Ù p) Ù b exists

and equals (a Ù b) Ù p.

Proof. (i) Notice that if a Ù b exists, then (a Ù b) Ù (p1 Ù p2) automatically

exists. Now

(a Ù b) Ù ( p1 Ù p2) # a Ù p1, b Ù p2

and suppose that c # a Ù p1, b Ù p2. Then c # a, b, so c # a Ù b. Since c
# p1, p2 we also have c # p1 Ù p2. Hence, c # (a Ù b) Ù ( p1 Ù p2) and the

result follows. (ii) This follows from (i) with p2 5 1. n

Lemma 2.4(i) states that the ª globalº existence of a Ù b implies the

ª localº existence (a Ù p1) Ù (b Ù p2). Letting p1 5 p2 5 0 shows that the

converse of Lemma 2.4(i) does not hold. For a P P, the element aÃP Ps

corresponds to the ª supportº of a in a certain sense. (This idea will become

clearer in Section 3.) Moreover, for a, b P P, the element pa,b 5 aÃÙ bÃP
Ps corresponds to the ª common supportº of a and b. The next result shows

that a Ù b exists if and only if their infimum exists on their common support.

For a discussion of the existence of a Ù b in the Hilbert space context, see

Moreland and Gudder (n.d.).

Theorem 2.5. Let P be an S-dominating DM-poset and let a, b P P. (i)

a Ù b exists if and only if (a Ù bÃ) Ù (b Ù aÃ) exists and in this case they

coincide. (ii) a Ù b exists if and only if (a Ù pa,b) Ù (b Ù pa,b) exists and in

this case they coincide.
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Proof. (i) If a Ù b exists, then by Lemma 2.4(i), (a Ù bÃ) Ù (b Ù aÃ) exists and

(a Ù bÃ) Ù (b Ù aÃ) 5 (a Ù b) Ù (aÃÙ bÃ)

Since a Ù b # a # aÃand a Ù b # b # bÃ, we have a Ù b # aÃÙ bÃ. Hence,

(a Ù b) Ù (aÃÙ bÃ) 5 a Ù b. Conversely, suppose that (a Ù bÃ) Ù (b Ù aÃ) exists.
Then (a Ù bÃ) Ù (b Ù aÃ) # a, b. If c # a, b, then c # aÃ, bÃ, so c # a Ù bÃ, b
Ù aÃ. Hence, c # (a Ù bÃ) Ù (b Ù aÃ) and the result follows. (ii) Applying

Lemma 2.4(ii), we have

a Ù pa,b 5 (aÃÙ bÃ) Ù a 5 (aÃÙ a) Ù bÃ5 a Ù bÃ

and similarly, b Ù pa,b 5 b Ù aÃ. The result now follows from (i). n

An effect algebra is an algebraic structure (P, % , 0, 1) where 0, 1 are

distinct elements of P and % is a partial binary operation on P that satisfies

the following conditions:

(E1) If a % b is defined, then b % a is defined and b % a 5 a % b.

(E2) If a % b and (a % b) % c are defined, then b % c and a % (b
% c) are defined and a % (b % c) 5 (a % b) % c.

(E3) For every a P P, there exists a unique a8 P P such that a % a8
5 1.

(E4) If a % 1 is defined, then a 5 0.

If a % b is defined, we write a ’ b and whenever we write a % b we
are implicitly assuming that a ’ b. We define a # b if there exists a c P
P such that a % c 5 b. It can be shown that a ’ b if and only if a # b8.
Moreover, (P, # , 0, 1, 8) forms a DM-poset. An orthoalgebra is an algebraic

structure (P, % , 0, 1) that satisfies (E1)±(E3) and the following condition:

(E5) If a % a is defined, then a 5 0.

It is easy to show that an orthoalgebra is a special case of an effect algebra.
Since an effect algebra P is a DM-poset, our previous definitions carry

over to P. Thus, a P P is sharp if a Ù a8 5 0. Also, P is sharply dominating
or S-dominating if P has these properties as a DM-poset. In any effect algebra

the following effect algebra orthomodular identity holds:

a # b implies a % (a % b8)8 5 b

Indeed, since

b8 % a % (a % b8)8 5 1 5 b8 % b

the identity follows by cancellation (Foulis and Bennett, 1994). An orthomod-
ular lattice is an orthocomplemented lattice in which the following lattice
orthomodular identity holds:
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a # b implies a Ú (b Ù a8) 5 b

It is shown in Cattaneo (n.d.) and Gudder (n.d.) that for a sharply dominating

effect algebra P, the set Ps is an orthoalgebra. The following theorem shows

that if P is an S-dominating effect algebra, then Ps is an orthomodular lattice.

Theorem 2.6. Let P be an S-dominating effect algebra and let a P P, p
P Ps. (i) If a ’ p, then a Ú p 5 a % p. (ii) If a8 ’ p8, then a Ù p 5 (a8 %
p8)8. (iii) If a # p, then a % ( p Ù a8) 5 p. (iv) If p # a, then p Ú (a Ù p8)
5 a. (v) Ps is an orthomodular lattice.

Proof. (i) It is shown in Cattaneo (n.d.) and Gudder (n.d.) that in any

effect algebra, if a ’ p, then a % p is a minimal upper bound for a and b.

Since a Ú p exists, it follows that a Ú p 5 a % p. (ii) Applying (i), we have

a Ù p 5 (a8 Ú p8)8 5 (a8 % p8)8

(iii) By the effect algebra orthomodular identity and (i) we have

p 5 a % (a % p8)8 5 a % (a Ú p8)8 5 a % ( p Ù a8)

(iv) As in (iii) we have

a 5 p % ( p % a8)8 5 p % (a8 Ú p)8 5 p % (a Ù p8) 5 p Ú (a Ù p8)

(v) We have already noted that (Ps , # , 0, 1, 8) is an orthocomplemented

lattice. If p, q P Ps with p # q, then applying (iv), we have p Ú (q Ù p8) 5
q. Hence, the lattice orthomodula r identity holds. n

3. HILBERT SPACE EFFECT ALGEBRAS

The most important example of an effect algebra for quantum mechanical

investigations is a Hilbert space effect algebra. Let H be a complex Hilbert

space and let %(H ) be the set of linear operators on H that satisfy 0 # A #
I. That is, 0 # ^ Ax, x & # ^ x, x & for all A P %(H ) and x P H. For A, B P
%(H ) we write A ’ B if A 1 B P %(H ) and in this case we define A % B
5 A 1 B. If we define A8 5 I 2 A for A P %(H ), it is clear that (%(H ), % ,

0, I ) is an effect algebra which we call a Hilbert space effect algebra.

Denoting the set of projections on H by 3(H ), we have 3(H ) # %(H ) and

it can be shown that 3(H ) is an orthomodular lattice. (This result will also

follow from Theorem 2.6.) Moreover, it can be shown that %(H )s 5 3(H )

(Gudder, 1996).
We now show that %(H ) is S-dominating. Since %(H ) is the standard

concrete model for the quantum effects of a physical system (Busch et al.,
1991; Davies, 1976; Holevo, 1982; Kraus, 1983; Ludwig, 1983), this result

shows that an S-dominating effect algebra gives a viable abstract model for



920 Gudder

quantum mechanics. We first verify that %(H ) is sharply dominating. For A
P %(H ), let AÃbe the projection onto the closure of the range R(A) of A.

Then AÃP 3(H ) 5 %(H )s and since AAÃ5 AÃA 5 A, it follows that A # AÃ.
If B P 3(H ) and A # B, then the null space N(B) # N(A). Hence,

R(A) 5 N(A) ’ # N(B) ’ 5 R(B)

It follows that AÃ# B. Hence, AÃis the smallest sharp element that dominates A.

We now show that if A P %(H ) and P P 3(H ), then A Ù P exists. Our

demonstration is similar to the proof given in Moreland and Gudder (n.d.),

where a more general problem is considered. We include the proof here for

completeness and because of its independent interest. The next lemma is a
well-known result.

Lemma 3.1. If A is a positive operator on H, then

) ^ Ax, y & ) 2 # ^ Ax, x & ^ Ay, y &

for every x, y P H.

Proof. Since A $ 0, A admits a unique positive square root A1/2. By

Schwarz’ s inequality, we have

) ^ Ax, y & ) 2 5 ) ^ A1/2x, A1/2y & ) 2 # i A1/2x i 2 i A1/2y i 2

5 ^ A1/2x, A1/2x & ^ A1/2y, A1/2y & 5 ^ Ax, x & ^ Ay, y & n

Lemma 3.2. Let e1, e2, . . . be an orthonormal set in H and let Pn P
3(H ) be the projection onto the subspace spanned by {e1, . . . , en}. If A P
%(H ), then A Ù P8n exists.

Proof. We first show that A Ù P81 exists. Let a 5 ^ Ae1, e1 & . If a 5 0, then

i A1/2e1 i 2 5 ^ A1/2e1, A1/2e1 & 5 a 5 0

Hence, A1/2e1 5 0, so Ae1 5 0. It follows that A 5 P81 AP81 # P81. Hence, A
Ù P81 5 A. Now suppose that a . 0 and define the operator B 5 a 2 1AP1 A.

It is evident that B $ 0. Applying Lemma 3.1, we have

^ Bx, x & 5 a 2 1 ^ AP1 Ax, x & 5 a 2 1 ^ P1 Ax, Ax & 5 a 2 1 ) ^ Ax, e1 & ) 2

# a 2 1 ^ Ae1, e1 & ^ Ax, x & 5 ^ Ax, x &

Hence, B # A, so C 5 A 2 B $ 0. Moreover, C # A # I and C P %(H ). Since

Be1 5 a 2 1AP1 Ae1 5 a 2 1A( ^ Ae1, e1 & e1) 5 Ae1

we have Ce1 5 0. Hence, C 5 P81CP81 # P81. To show that C 5 A Ù P81,
suppose that D P %(H ) and D # A, P81. Then D 5 P81 DP81 and De1 5 0.

Applying Lemma 3.1, we have
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^ P81 BP81x, x & 5 a 2 1 ^ P81 AP1 AP81x, x & 5 a 2 1 ^ P81 A( ^ AP81x, e1 & e1), x &

5 a 2 1 ^ AP81x, e1 & ^ P81 Ae1, x & 5 a 2 1 ) ^ Ae1, P81x & ) 2

5 a 2 1 ) ^ (A 2 D)e1, P81x & ) 2

# a 2 1 ^ (A 2 D)e1, e1 & ^ (A 2 D)P81x, P81x &

5 ^ P81(A 2 D)P81x, x &

Hence, P81 BP81 # P81(A 2 D)P81. We then have

C 2 D 5 P81(C 2 D)P81 5 P81(A 2 D)P81 2 P81 BP81 $ 0

Thus, D # C and we conclude that C 5 A Ù P81.
We next show that A Ù P82 exists. Since A Ù P81 # P81, we can identify

A Ù P81 with the restriction A Ù P81 ) P81 H. Proceeding as before, we conclude

that (A Ù P81) Ù P82 exists. It is clear that (A Ù P81) Ù P82 # A, P82. Suppose

that D P %(H ) satisfies D # A, P82. Since P82 # P81, we have D # A Ù P81,
P82, so D # (A Ù P81) Ù P82. Hence,

A Ù P82 5 (A Ù P81) Ù P82

Continuing by induction, we conclude that A Ù P8n exists for all n P N. n

Theorem 3.3. If A P %(H ) and P P 3(H ), then A Ù P exists.

Proof. If P8 is finite-dimensional, we are finished, by Lemma 3.2, so

suppose P8 is infinite-dimensional. Let { f d : d P D } be an orthonormal basis

for P8H. For a # D with cardinality ) a ) , ` , let Q a be the projection onto

the closed subspace spanned by { f d : d ¸ a }. Then { a # D : ) a ) , ` } is a
directed set under set-theoretic inclusion and {Q a : a # D , ) a ) , ` } is a

decreasing net of projections. Moreover, (P 1 Q a )8 is the projection onto

the finite-dimensional subspace spanned by { f d : d P a }. For x P H, since

o { ) ^ x, f d & ) 2: d P D } , `

we have

lim ^ Q a x, x & 5 lim o { ) ^ x, f d & ) 2: d ¸ a } 5 0

Hence,

lim ^ (P 1 Q a )x, x & 5 ^ Px, x &

for every x P H. Since (P 1 Q a )8 is finite-dimensional, by Lemma 3.2, A
Ù (P 1 Q a ) exists. Since A Ù (P 1 Q a ) is a decreasing net of positive
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operators, it follows from a well-known theorem (Brown and Page, 1970)

that there exists a B P %(H ) such that

^ Bx, x & 5 lim ^ A Ù (P 1 Q a )x, x &

for every x P H. Since A Ù (P 1 Q a ) # A, we have ^ Bx, x & # ^ Ax, x & for

every x P H, so B # A. Since A Ù (P 1 Q a ) # P 1 Q a , we have

^ Bx, x & # lim ^ (P 1 Q a )x, x & 5 ^ Px, x &

for every x P H, so B # P. Suppose that C P %(H ) and C # A, P. Then C
# A, P 1 Q a , so C # A Ù (P 1 Q a ) for every a . Hence, for every x P H,

we have

^ Cx, x & # lim ^ A Ù (P 1 Q a )x, x & 5 ^ Bx, x &

Therefore, C # B, so B 5 A Ù P. n

Applying Theorems 2.6 and 3.3, we can draw some interesting conclu-

sions. If A P %(H ), P P 3(H ), and A 1 P # I, then A Ú P 5 A 1 P. If A
P %(H ), P P 3(H ), and I # A 1 P, then A Ù P 5 A 1 P 2 I. This last

property can be restated as follows. If A8 # P, then A Ù P 5 P 2 A8 5 A
2 P8.
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