S-Dominating Effect Algebras

Stanley Gudder¹

Received November 11, 1997

A special type of effect algebra called an S-dominating effect algebra is introduced. It is shown that an S-dominating effect algebra P has a naturally defined Brouwer-complementation that gives P the structure of a Brouwer-Zadeh poset. This enables us to prove that the sharp elements of P form an orthomodular lattice. We then show that a standard Hilbert space effect algebra is S-dominating. We conclude that S-dominating effect algebras may be useful abstract models for sets of quantum effects in physical systems.

1. INTRODUCTION

Effect algebras (or D-posets) have recently been introduced for investigating the foundations of quantum mechanics (Dvurečenskij, 1995; Dvurečenskij and Pulmannová, 1994; Foulis and Bennett, 1994; Kôpka, 1992; Kôpka and Chovanec, 1994; Riečanová and Brsel, 1994). The advantage of effect algebras over previously defined structures of sharp elements such as orthoalgebras (Feldman and Wilce, 1933; Foulis et al., 1992; Gudder, 1988) and orthomodular posets (Beltrametti and Cassinelli, 1981; Gudder, 1988; Pták and Pulmannová, 1991) is that effect algebras provide a mechanism for studying quantum effects that may be unsharp. However, an effect algebra is so general that its set of sharp elements need not form a regular algebraic structure. To remedy this shortcoming, we introduce a special type of effect algebra called S-dominating. We show that for S-dominating effect algebras, the set of sharp elements form an orthomodular lattice. We also show that a standard Hilbert space effect algebra is S-dominating. Hence, S-dominating effect algebras may be useful abstract models for sets of quantum effects in physical systems.

¹Department of Mathematics and Computer Science, University of Denver, Denver, Colorado 80208.

We now give a brief overview, leaving precise mathematical definitions for Section 2. We first consider a generalization of an effect algebra called a DeMorgan (DM) poset P. We denote the sharp elements of P by P_s and say that P is sharply dominating if every element of P is dominated by a smallest sharp element. If P is sharply dominating, it is shown that P possesses a natural B-complementation that gives P the structure of a BZ-poset. For BZ-posets, we show that existing infima and suprema of sharp elements are sharp. A sharply dominating DM-poset P is called an S-dominating DMposet if $a \wedge p$ exists for every $a \in P$, $p \in P_s$. It follows that if P is Sdominating, then P_s is an orthocomplemented lattice. We next consider Sdominating effect algebras and show in this case that P_s is an orthomodular lattice. Finally, Section 3 shows that Hilbert space effect algebras are Sdominating.

2. S-DOMINATING STRUCTURES

A DM-poset is an algebraic structure $(P, \leq, 0, 1, ')$ where $(P, \leq, 0, 1)$ is a bounded poset and ' is a unary operation on P that satisfies: a'' = a and $a \leq b$ implies $b' \leq a'$. It is easy to verify that DeMorgan's laws hold on P. That is, $(a \lor b)' = a' \land b'$ and $(a \land b)' = a' \lor b'$ in the sense that if one side of the equality exists, then so does the other side and they coincide. An element $a \in P$ is sharp if $a \land a'$ exists and equals 0. It is clear that 0, 1 are sharp and if a is sharp, then a' is sharp. Denoting the set of sharp elements in P by P_s , it follows that $(P_s, \leq, 0, 1, ')$ is an orthocomplemented poset. We say that P is sharply dominating if every $a \in P$ is dominated by a smallest sharp element \hat{a} . That is, $\hat{a} \in P_s$, $a \leq \hat{a}$ and if $b \in P_s$ satisfies $a \leq b$, then $\hat{a} \leq b$. It is evident that \hat{a} is unique. If P is a sharply dominating DM-poset, we define a unary operation \sim on P by $a^{\sim} = (\hat{a})'$. The following result is proved in Gudder (n.d.).

Lemma 2.1. If P is a sharply dominating DM-poset, then for every a, $b \in P$ we have (i) $a \le a^{\sim}$, (ii) $a \le b$ implies $b^{\sim} \le a^{\sim}$, (iii) $a \land a^{\sim} = 0$, (iv) $a^{\sim'} = a^{\sim \sim}$.

A unary operation ~ that satisfies (i)–(iv) of Lemma 2.1 is called a Bcomplementation and a DM-poset with a B-complementation (P, \leq , 0, 1, ', ~) is called a BZ-poset (Cattaneo, n.d.; Cattaneo and Marino, 1988; Cattaneo and Nisticò, 1989; Gudder, n.d.). The results in the next lemma are proved in Gudder (1996, n.d.).

Lemma 2.2. Let P be a BZ-poset. (i) If $a \lor b$ exists in P, then $a^{\sim} \land b^{\sim}$ exists in P and $(a \lor b)^{\sim} = a^{\sim} \land b^{\sim}$. (ii) The following statements are equivalent: (1) $a \in P_s$, (2) $a = a^{\sim \sim}$, (3) $a' = a^{\sim}$.

Corollary 2.3. Let P be a BZ-poset and let $a, b \in P_s$. (i) If $a \lor b$ exists, then $a \lor b \in P_s$. (ii) If $a \land b$ exists, then $a \land b \in P_s$.

Proof. (i) Applying Lemma 2.2, we have

$$(a \lor b)^{\sim} = a^{\sim} \land b^{\sim} = a' \land b' = (a \lor b)'$$

Hence, by Lemma 2.2(ii), we have that $a \lor b \in P_s$.

(ii) Since $a, b \in P_s$, we have $a', b' \in P_s$. By (i), we have $(a \land b)' = a' \lor b' \in P_s$.

Of course, if *P* is a sharply dominating DM-poset, then *P* is a BZ-poset, so Lemma 2.2 and Corollary 2.3 hold for *P*. A sharply dominating DM-poset *P* is called a S-*dominating* DM-*poset* if $a \wedge p$ exists for every $a \in P, p \in P_s$. (It follows from DeMorgan's laws that $a \vee p$ also exists.) If *P* is an S-dominating DM-poset, it follows from Corollary 2.3 that $(P_s, \leq, 0, 1, ')$ is an orthocomplemented lattice.

Lemma 2.4. Let *P* be an S-dominating DM-poset. (i) If $a, b \in P, p_1, p_2 \in P_s$, and $a \wedge b$ exists, then $(a \wedge p_1) \wedge (b \wedge p_2)$ exists and equals $(a \wedge b) \wedge (p_1 \wedge p_2)$. (ii) If $a, b \in P, p \in P_s$, and $a \wedge b$ exists, then $(a \wedge p) \wedge b$ exists and equals $(a \wedge b) \wedge p$.

Proof. (i) Notice that if $a \wedge b$ exists, then $(a \wedge b) \wedge (p_1 \wedge p_2)$ automatically exists. Now

$$(a \wedge b) \wedge (p_1 \wedge p_2) \le a \wedge p_1, \quad b \wedge p_2$$

and suppose that $c \le a \land p_1$, $b \land p_2$. Then $c \le a$, b, so $c \le a \land b$. Since $c \le p_1$, p_2 we also have $c \le p_1 \land p_2$. Hence, $c \le (a \land b) \land (p_1 \land p_2)$ and the result follows. (ii) This follows from (i) with $p_2 = 1$.

Lemma 2.4(i) states that the "global" existence of $a \wedge b$ implies the "local" existence $(a \wedge p_1) \wedge (b \wedge p_2)$. Letting $p_1 = p_2 = 0$ shows that the converse of Lemma 2.4(i) does not hold. For $a \in P$, the element $\hat{a} \in P_s$ corresponds to the "support" of a in a certain sense. (This idea will become clearer in Section 3.) Moreover, for $a, b \in P$, the element $p_{a,b} = \hat{a} \wedge \hat{b} \in P_s$ corresponds to the "common support" of a and b. The next result shows that $a \wedge b$ exists if and only if their infimum exists on their common support. For a discussion of the existence of $a \wedge b$ in the Hilbert space context, see Moreland and Gudder (n.d.).

Theorem 2.5. Let P be an S-dominating DM-poset and let $a, b \in P$. (i) $a \wedge b$ exists if and only if $(a \wedge b) \wedge (b \wedge a)$ exists and in this case they coincide. (ii) $a \wedge b$ exists if and only if $(a \wedge p_{a,b}) \wedge (b \wedge p_{a,b})$ exists and in this case they coincide.

Proof. (i) If $a \wedge b$ exists, then by Lemma 2.4(i), $(a \wedge b) \wedge (b \wedge a)$ exists and

$$(a \land b) \land (b \land a) = (a \land b) \land (a \land b)$$

Since $a \wedge b \leq a \leq \hat{a}$ and $a \wedge b \leq b \leq \hat{b}$, we have $a \wedge b \leq \hat{a} \wedge \hat{b}$. Hence, $(a \wedge b) \wedge (\hat{a} \wedge \hat{b}) = a \wedge b$. Conversely, suppose that $(a \wedge \hat{b}) \wedge (b \wedge \hat{a})$ exists. Then $(a \wedge b) \wedge (b \wedge \hat{a}) \leq a$, b. If $c \leq a$, b, then $c \leq \hat{a}$, \hat{b} , so $c \leq a \wedge \hat{b}$, $b \wedge \hat{a}$. Hence, $c \leq (a \wedge \hat{b}) \wedge (b \wedge \hat{a})$ and the result follows. (ii) Applying Lemma 2.4(ii), we have

$$a \wedge p_{a,b} = (\hat{a} \wedge \hat{b}) \wedge a = (\hat{a} \wedge a) \wedge \hat{b} = a \wedge \hat{b}$$

and similarly, $b \wedge p_{a,b} = b \wedge \hat{a}$. The result now follows from (i).

An *effect algebra* is an algebraic structure $(P, \oplus, 0, 1)$ where 0, 1 are distinct elements of P and \oplus is a partial binary operation on P that satisfies the following conditions:

- (E1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $b \oplus a = a \oplus b$.
- (E2) If $a \oplus b$ and $(a \oplus b) \oplus c$ are defined, then $b \oplus c$ and $a \oplus (b \oplus c)$ are defined and $a \oplus (b \oplus c) = (a \oplus b) \oplus c$.
- (E3) For every $a \in P$, there exists a unique $a' \in P$ such that $a \oplus a' = 1$.
- (E4) If $a \oplus 1$ is defined, then a = 0.

If $a \oplus b$ is defined, we write $a \perp b$ and whenever we write $a \oplus b$ we are implicitly assuming that $a \perp b$. We define $a \leq b$ if there exists a $c \in P$ such that $a \oplus c = b$. It can be shown that $a \perp b$ if and only if $a \leq b'$. Moreover, $(P, \leq, 0, 1, ')$ forms a DM-poset. An *orthoalgebra* is an algebraic structure $(P, \oplus, 0, 1)$ that satisfies (E1)–(E3) and the following condition:

(E5) If $a \oplus a$ is defined, then a = 0.

It is easy to show that an orthoalgebra is a special case of an effect algebra.

Since an effect algebra P is a DM-poset, our previous definitions carry over to P. Thus, $a \in P$ is *sharp* if $a \wedge a' = 0$. Also, P is *sharply dominating* or S-*dominating* if P has these properties as a DM-poset. In any effect algebra the following *effect algebra orthomodular identity* holds:

$$a \le b$$
 implies $a \oplus (a \oplus b')' = b$

Indeed, since

$$b' \oplus a \oplus (a \oplus b')' = 1 = b' \oplus b$$

the identity follows by cancellation (Foulis and Bennett, 1994). An *orthomodular lattice* is an orthocomplemented lattice in which the following *lattice orthomodular identity* holds:

$a \le b$ implies $a \lor (b \land a') = b$

It is shown in Cattaneo (n.d.) and Gudder (n.d.) that for a sharply dominating effect algebra P, the set P_s is an orthoalgebra. The following theorem shows that if P is an S-dominating effect algebra, then P_s is an orthomodular lattice.

Theorem 2.6. Let P be an S-dominating effect algebra and let $a \in P$, $p \in P_s$. (i) If $a \perp p$, then $a \lor p = a \oplus p$. (ii) If $a' \perp p'$, then $a \land p = (a' \oplus p')'$. (iii) If $a \leq p$, then $a \oplus (p \land a') = p$. (iv) If $p \leq a$, then $p \lor (a \land p') = a$. (v) P_s is an orthomodular lattice.

Proof. (i) It is shown in Cattaneo (n.d.) and Gudder (n.d.) that in any effect algebra, if $a \perp p$, then $a \oplus p$ is a minimal upper bound for a and b. Since $a \lor p$ exists, it follows that $a \lor p = a \oplus p$. (ii) Applying (i), we have

$$a \wedge p = (a' \vee p')' = (a' \oplus p')'$$

(iii) By the effect algebra orthomodular identity and (i) we have

$$p = a \oplus (a \oplus p')' = a \oplus (a \lor p')' = a \oplus (p \land a')$$

(iv) As in (iii) we have

$$a = p \oplus (p \oplus a')' = p \oplus (a' \lor p)' = p \oplus (a \land p') = p \lor (a \land p')$$

(v) We have already noted that $(P_s, \leq, 0, 1, ')$ is an orthocomplemented lattice. If $p, q \in P_s$ with $p \leq q$, then applying (iv), we have $p \lor (q \land p') = q$. Hence, the lattice orthomodular identity holds.

3. HILBERT SPACE EFFECT ALGEBRAS

The most important example of an effect algebra for quantum mechanical investigations is a Hilbert space effect algebra. Let *H* be a complex Hilbert space and let $\mathscr{C}(H)$ be the set of linear operators on *H* that satisfy $0 \le A \le I$. That is, $0 \le \langle Ax, x \rangle \le \langle x, x \rangle$ for all $A \in \mathscr{C}(H)$ and $x \in H$. For *A*, $B \in \mathscr{C}(H)$ we write $A \perp B$ if $A + B \in \mathscr{C}(H)$ and in this case we define $A \oplus B = A + B$. If we define A' = I - A for $A \in \mathscr{C}(H)$, it is clear that $(\mathscr{C}(H), \oplus, 0, I)$ is an effect algebra which we call a *Hilbert space effect algebra*. Denoting the set of projections on *H* by $\mathscr{P}(H)$, we have $\mathscr{P}(H) \subseteq \mathscr{C}(H)$ and it can be shown that $\mathscr{P}(H)$ is an orthomodular lattice. (This result will also follow from Theorem 2.6.) Moreover, it can be shown that $\mathscr{C}(H)_s = \mathscr{P}(H)$ (Gudder, 1996).

We now show that $\mathscr{C}(H)$ is S-dominating. Since $\mathscr{C}(H)$ is the standard concrete model for the quantum effects of a physical system (Busch *et al.*, 1991; Davies, 1976; Holevo, 1982; Kraus, 1983; Ludwig, 1983), this result shows that an S-dominating effect algebra gives a viable abstract model for

quantum mechanics. We first verify that $\mathscr{C}(H)$ is sharply dominating. For $A \in \mathscr{C}(H)$, let \hat{A} be the projection onto the closure of the range R(A) of A. Then $A \in \mathscr{P}(H) = \mathscr{C}(H)_s$ and since $A\hat{A} = \hat{A}A = A$, it follows that $A \leq \hat{A}$. If $B \in \mathscr{P}(H)$ and $A \leq B$, then the null space $N(B) \subseteq N(A)$. Hence,

$$R(A) = N(A)^{\perp} \subseteq N(B)^{\perp} = R(B)$$

It follows that $\hat{A} \leq B$. Hence, \hat{A} is the smallest sharp element that dominates A.

We now show that if $A \in \mathscr{C}(H)$ and $P \in \mathscr{P}(H)$, then $A \wedge P$ exists. Our demonstration is similar to the proof given in Moreland and Gudder (n.d.), where a more general problem is considered. We include the proof here for completeness and because of its independent interest. The next lemma is a well-known result.

Lemma 3.1. If A is a positive operator on H, then

$$|\langle Ax, y \rangle|^2 \le \langle Ax, x \rangle \langle Ay, y \rangle$$

for every $x, y \in H$.

Proof. Since $A \ge 0$, A admits a unique positive square root $A^{1/2}$. By Schwarz's inequality, we have

$$\begin{aligned} \left| \langle Ax, y \rangle \right|^2 &= \left| \langle A^{1/2}x, A^{1/2}y \rangle \right|^2 \leq \left\| A^{1/2}x \right\|^2 \left\| A^{1/2}y \right\|^2 \\ &= \langle A^{1/2}x, A^{1/2}x \rangle \langle A^{1/2}y, A^{1/2}y \rangle = \langle Ax, x \rangle \langle Ay, y \rangle \end{aligned}$$

Lemma 3.2. Let e_1, e_2, \ldots be an orthonormal set in H and let $P_n \in \mathcal{P}(H)$ be the projection onto the subspace spanned by $\{e_1, \ldots, e_n\}$. If $A \in \mathcal{E}(H)$, then $A \wedge P'_n$ exists.

Proof. We first show that $A \wedge P'_1$ exists. Let $a = \langle Ae_1, e_1 \rangle$. If a = 0, then

$$\|A^{1/2}e_1\|^2 = \langle A^{1/2}e_1, A^{1/2}e_1 \rangle = a = 0$$

Hence, $A^{1/2}e_1 = 0$, so $Ae_1 = 0$. It follows that $A = P'_1AP'_1 \le P'_1$. Hence, $A \land P'_1 = A$. Now suppose that a > 0 and define the operator $B = a^{-1}AP_1A$. It is evident that $B \ge 0$. Applying Lemma 3.1, we have

$$\langle Bx, x \rangle = a^{-1} \langle AP_1 Ax, x \rangle = a^{-1} \langle P_1 Ax, Ax \rangle = a^{-1} |\langle Ax, e_1 \rangle|^2 \leq a^{-1} \langle Ae_1, e_1 \rangle \langle Ax, x \rangle = \langle Ax, x \rangle$$

Hence, $B \le A$, so $C = A - B \ge 0$. Moreover, $C \le A \le I$ and $C \in \mathscr{E}(H)$. Since

$$Be_1 = a^{-1}AP_1Ae_1 = a^{-1}A(\langle Ae_1, e_1 \rangle e_1) = Ae_1$$

we have $Ce_1 = 0$. Hence, $C = P'_1CP'_1 \le P'_1$. To show that $C = A \land P'_1$, suppose that $D \in \mathscr{C}(H)$ and $D \le A$, P'_1 . Then $D = P'_1DP'_1$ and $De_1 = 0$. Applying Lemma 3.1, we have

$$\langle P'_{1}BP'_{1}x, x \rangle = a^{-1} \langle P'_{1}AP_{1}AP'_{1}x, x \rangle = a^{-1} \langle P'_{1}A(\langle AP'_{1}x, e_{1}\rangle e_{1}), x \rangle$$
$$= a^{-1} \langle AP'_{1}x, e_{1} \rangle \langle P'_{1}Ae_{1}, x \rangle = a^{-1} |\langle Ae_{1}, P'_{1}x \rangle|^{2}$$
$$= a^{-1} |\langle (A - D)e_{1}, P'_{1}x \rangle|^{2}$$
$$\leq a^{-1} \langle (A - D)e_{1}, e_{1} \rangle \langle (A - D)P'_{1}x, P'_{1}x \rangle$$
$$= \langle P'_{1}(A - D)P'_{1}x, x \rangle$$

Hence, $P'_1BP'_1 \leq P'_1(A - D)P'_1$. We then have

$$C - D = P'_1(C - D)P'_1 = P'_1(A - D)P'_1 - P'_1BP'_1 \ge 0$$

Thus, $D \leq C$ and we conclude that $C = A \wedge P'_1$.

We next show that $A \wedge P'_2$ exists. Since $A \wedge P'_1 \leq P'_1$, we can identify $A \wedge P'_1$ with the restriction $A \wedge P'_1 | P'_1 H$. Proceeding as before, we conclude that $(A \wedge P'_1) \wedge P'_2$ exists. It is clear that $(A \wedge P'_1) \wedge P'_2 \leq A$, P'_2 . Suppose that $D \in \mathscr{C}(H)$ satisfies $D \leq A$, P'_2 . Since $P'_2 \leq P'_1$, we have $D \leq A \wedge P'_1$, P'_2 , so $D \leq (A \wedge P'_1) \wedge P'_2$. Hence,

$$A \wedge P'_2 = (A \wedge P'_1) \wedge P'_2$$

Continuing by induction, we conclude that $A \wedge P'_n$ exists for all $n \in \mathbb{N}$.

Theorem 3.3. If $A \in \mathscr{C}(H)$ and $P \in \mathscr{P}(H)$, then $A \wedge P$ exists.

Proof. If P' is finite-dimensional, we are finished, by Lemma 3.2, so suppose P' is infinite-dimensional. Let $\{f_{\delta}: \delta \in \Delta\}$ be an orthonormal basis for P'H. For $\alpha \subseteq \Delta$ with cardinality $|\alpha| < \infty$, let Q_{α} be the projection onto the closed subspace spanned by $\{f_{\delta}: \delta \notin \alpha\}$. Then $\{\alpha \subseteq \Delta: |\alpha| < \infty\}$ is a directed set under set-theoretic inclusion and $\{Q_{\alpha}: \alpha \subseteq \Delta, |\alpha| < \infty\}$ is a decreasing net of projections. Moreover, $(P + Q_{\alpha})'$ is the projection onto the finite-dimensional subspace spanned by $\{f_{\delta}: \delta \in \alpha\}$. For $x \in H$, since

$$\sum \{ |\langle x, f_{\delta} \rangle|^2 : \delta \in \Delta \} < \infty$$

we have

$$\lim \langle Q_{\alpha} x, x \rangle = \lim \sum \left\{ \left| \langle x, f_{\delta} \rangle \right|^2 : \delta \notin \alpha \right\} = 0$$

Hence,

$$\lim \langle (P + Q_{\alpha})x, x \rangle = \langle Px, x \rangle$$

for every $x \in H$. Since $(P + Q_{\alpha})'$ is finite-dimensional, by Lemma 3.2, $A \land (P + Q_{\alpha})$ exists. Since $A \land (P + Q_{\alpha})$ is a decreasing net of positive

operators, it follows from a well-known theorem (Brown and Page, 1970) that there exists a $B \in \mathscr{C}(H)$ such that

$$\langle Bx, x \rangle = \lim \langle A \land (P + Q_{\alpha})x, x \rangle$$

for every $x \in H$. Since $A \land (P + Q_{\alpha}) \leq A$, we have $\langle Bx, x \rangle \leq \langle Ax, x \rangle$ for every $x \in H$, so $B \leq A$. Since $A \land (P + Q_{\alpha}) \leq P + Q_{\alpha}$, we have

$$\langle Bx, x \rangle \leq \lim \langle (P + Q_{\alpha})x, x \rangle = \langle Px, x \rangle$$

for every $x \in H$, so $B \leq P$. Suppose that $C \in \mathscr{C}(H)$ and $C \leq A$, P. Then $C \leq A$, $P + Q_{\alpha}$, so $C \leq A \land (P + Q_{\alpha})$ for every α . Hence, for every $x \in H$, we have

$$\langle Cx, x \rangle \leq \lim \langle A \land (P + Q_{\alpha})x, x \rangle = \langle Bx, x \rangle$$

Therefore, $C \leq B$, so $B = A \wedge P$.

Applying Theorems 2.6 and 3.3, we can draw some interesting conclusions. If $A \in \mathscr{C}(H)$, $P \in \mathscr{P}(H)$, and $A + P \leq I$, then $A \lor P = A + P$. If $A \in \mathscr{C}(H)$, $P \in \mathscr{P}(H)$, and $I \leq A + P$, then $A \land P = A + P - I$. This last property can be restated as follows. If $A' \leq P$, then $A \land P = P - A' = A - P'$.

REFERENCES

- Beltrametti, E., and Cassinelli, G. (1981). *The Logic of Quantum Mechanics*, Addison-Wesley, Reading, Massachusetts.
- Brown, A., and Page, A. (1970). *Elements of Functional Analysis*, Von Nostrand Reinhold, London.
- Busch, P., Lahti, P., and Mittlestaedt, P. (1991). The Quantum Theory of Measurements, Springer-Verlag, Berlin.
- Cattaneo, G. (n.d.). A unified framework for the algebra of unsharp quantum mechanics, International Journal of Theoretical Physics, to appear.
- Cattaneo, G., and Marino, G. (1988). Non-usual orthocomplementations on partially ordered sets and fuzziness, *Fuzzy Sets and Systems*, **25**, 107–123.
- Cattaneo, G., and Nisticò, G. (1989). Brouwer–Zadeh posets and three-valued Lukasiewicz posets, *Fuzzy Sets and Systems*, 33, 165–190.
- Davies, E. B. (1976). Quantum Theory of Open Systems, Academic Press, New York.
- Dvurečenskij, A. (1995). Tensor product of difference posets, *Transactions of the American Mathematical Society*, **147**, 1043–1057.
- Dvurečenskij, A., and Pulmannová, S. (1994). Difference posets, effects, and quantum measurements, *International Journal of Theoretical Physics*, 33, 819–850.
- Feldman, D., and Wilce, A. (1933). σ-additivity in manuals and orthoalgebras, *Order*, 10, 383–392.
- Foulis, D., and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics, *Foundations of Physics*, 24, 1331–1352.

S-Dominating Effect Algebras

- Foulis, D., Greechie, R., and Rüttimann, G. (1992). Filters and supports in orthoalgebras, International Journal of Theoretical Physics, 31, 789–802.
- Gudder, S. (1988). Quantum Probability, Academic Press, Orlando, Florida.
- Gudder, S. (1996). Semi-orthoposets, International Journal of Theoretical Physics, 35, 1141–1173.
- Gudder, S. (n.d.). Sharply dominating effect algebras, to appear.
- Holevo, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam.
- Kôpka, F. (1992). D-posets and fuzzy sets, Tatra Mountains Mathematical Publications, 1, 83–87.
- Kôpka, F., and Chovanec, F. (1994). D-posets, Mathematica Slovaca, 44, 21-34.
- Kraus, K. (1983). States, Effects, and Operations, Springer-Verlag, Berlin.
- Ludwig, G. (1983). Foundations of Quantum Mechanics I, Springer-Verlag, Berlin.
- Moreland, T., and Gudder, S. (n.d.). Infima of Hilbert space effects, to appear.
- Pták, P., and Pulmannová, S. (1991). Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht.
- Riecănová, Z., and Brsel, D. (1994). Counterexamples in difference posets and orthoalgebras, International Journal of Theoretical Physics, 33, 133–141.